A Technology Analysis of Repositories and
Services

Sayeed Choudhury
Jim Martino

This document represents a presentation given at the Spring 2005 CNI
Task Force Meeting in Washington, DC on April 5, 2005.

Abstract:

The concept of the institutional repository has gained traction
within the digital library community. While this idea provides a
useful description that may facilitate institutional adoption, it
may also oversimplify the complete picture associated with
digital library architecture. Institutions may now be finding that
there will be multiple repositories and applications in the same
environment. Developing individual interfaces for each
application/repository pair presents scaling difficulties as the
numbers of applications and repositories rise. At Johns Hopkins,
we are promoting the idea that applications should access
repositories through an abstract, repository agnostic layer, rather
than through custom application to repository integrations. With
funding from the Mellon Foundation, Johns Hopkins University will
evaluate repository software and a range of services. The result
of this evaluation will be a set of best practices,
recommendations, and functional requirements for repositories
and applications. This project reflects our belief that content
should reside in multiple repositories external to applications, so
that the same content can be used by several systems and
support multiple services. This concept will be tested with
content that is moved through repositories into applications as
defined against a set of use cases that reflect various services.
While our project will evaluate uses for digital preservation (e.qg.,
LC Archive Ingest Handling Test), e-learning (e.g., Sakai), and e-
publishing (e.g., Project Muse), this briefing will focus primarily on
application to learning management systems.

The focus of this presentation is the integration of repositories and
applications that provide services. It was encouraging to hear
presentations from multiple repository and application development
projects at a meeting at the Mellon Foundation last week that stressed
the importance of integration through use cases (which is the approach
we're proposing).

Perhaps a broader challenge would be to consider a perspective
beyond the repository (which is arguably the library perspective) or an
individual application (which is arguably the perspective of an
educational technologist) looking at a range of uses, but this
presentation will discuss e-learning in particular. The goal is to
determine the architecture that will be necessary to combine multiple
systems to serve a range of needs. Our primary consideration is how
we actually MOVE CONTENT between these systems.

We start with the perspective of someone who supports e-learning. In
this respect, you could begin with courseware. With a certain
perspective, this seems well contained in that one can offer the service
and house the content within the application. This situation is depicted
in lllustration 1.

Courseware

Content
Management

lllustration 1
Text 1

But what happens when you want to add functionality? For example,
there's a great deal of discussion about other tools being used for
learning such as blogs, eportfolios, wikis ...

One approach would be to build additional modules or functionality
onto this courseware application, perhaps similar to the “building
blocks” approach shown in lllustration 2.

Personal
Information
System

Portfolio

Courseware

Content
Management

lllustration 2

Our premise is that this approach is problematic for a few reasons,
most notably that a monolithic approach becomes somewhat unwieldy
or bulky (“feature creep”). Another issue is that of lack of choice or
flexibility, as one must choose vendor modules. What happens if we
wish to use another eportfolio or library management system? A
vendor may eventually support other such systems, but most probably
on their own timeline, or according to their strategic or business plans.

We propose another approach that adopts open standards, modular
approach to applications, and which does not prohibit use of vendor-
based options, but which only prohibits using a monolithic, closed
vendor-based approach.

Sakai is a collaboration and learning environment, OSP is an eportfolio
application, Chandler is a personal information management
application. These are open-source Mellon projects, but | don't mean to
imply that these are the only choices. You can most probably identify
an application that works in these areas (e.g., WebCT instead of Sakai)

Imagine that you wish to share content between these applications -
for example, calendar or schedule information between Chandler and
Sakai, or a personal, student essay between Sakai and OSP.
(lMlustration 3).

Sakai 0OsP

Chandler

lllustration 3

Now consider connecting them to access the other systems's content
(IMlustration 4). As you can guess, these arrows are shown to depict
these types of connections.

Illustration 4

Now imagine a situation with an even more complex scenario, that of
using LionShare, which is a P2P application. In some sense, P2P
applications sit somewhere between an application and a repository
since it supports both services and storage. (lllustration 5)

Sakai OsP

Chandler LionShare

lllustration 5

lllustration 6 shows what happens when one considers the pairwise or
bilateral connections between three applications and the P2P system.

Chandler

lllustration 6

You might recall that | proposed this open, modular approach to reduce
complexity and unwieldiness, but looking at this diagram, you might be
wondering about the benefits.

One way to manage this complexity is to remove the content storage
aspects of these applications. By using a persistent repository to store
the content and having the applications interface with the repository -
which looks better. (lllustration 7)

Sakai

- Chandler '

Institutional
Repository

lllustration 7

| should also stress that one of the reasons why we believe content
should reside in the repositories is that it increases our ability to
support preservation. Storing content in generalized, non-fixed formats
(“simple” or “dumb” repositories) gives us a better chance of handling
that content over time. At this point, you might think that life is good -
but just as there are many applications to consider, there are also
many repositories to consider - see lllustration 8:

Sakai QsSP

Chandler " _ LionS -'-I'a’.‘_.!:' _

DSpace

lllustration 8

I've chosen specific names to highlight that institutions are making
different choices, but there are different types of content to consider.
One way around this complexity is to create an interface layer to
mediate connectivity between applications and repositories (lllustration
9).

Sakai Chandler | OSP iJGHShﬂTE

Repository Interface Layer

11‘
--

That is, applications could write to this layer without knowing what
repositories might access it. And repositories could write to this layer
without knowing what applications will access it. By doing so, we take
a (basically) m x n problem and make it a (basically) m + n problem.

Illustration 9

It's one thing to have this diagram, it's another to get to our focal point
of MOVING CONTENT through these systems according to this idea. In
order to test this proposed approach, we intend to work with a series
of use cases that will describe different ways in which people may wish
to access content and modify it, repurpose it, etc. within applications.

I've added science data to this last slide to emphasize the growing
repository problem, but | will mention in particular how important this
area has become. At Hopkins, we've been working closely with the
Virtual Observatory Project to consider their data curation needs. Use
cases from existing proposal effort. In some cases, we've already
gained some experience with ingesting content (through AIHT). In
others, we’re still developing use cases.

Use Case Approach

In the second half of this presentation we will talk about the approach
we're adopting for use cases, with a particular emphasis on e-learning.
The use case approach we are using is fairly straightforward, and
involves four main steps.

Generally, we

e Start with scenarios, or “stories”

e Map the sequences of key events

e Group scenarios according to the project focus

e Develop use cases from classes of scenarios

The scenarios are simply descriptions of specific interactions between
users and systems. We divide scenarios into groups according to how
their sequences of events agree, so that many different scenarios will
collapse into relatively few use cases.

We will keep track of the following information for our use cases, after
Kulak and Guiney:

Use Case Name
Summary

Actors

Basic Course of Events
Alternative Paths
Exception Paths
Extension Points
Assumptions
Preconditions
Postconditions
Author

Date

Scenarios

Most of these fields are self-explanatory. However, | think a word of
clarification on the difference between a precondition and an
assumption is necessary. A precondition is understood to be something
inside the system under development which is necessary for the use
case, but is outside the scope of the use case itself; assumptions are
also necessary for the use case, but are outside the scope of the
development project. The last field, scenarios, is just a list of
references from the use cases to the various scenarios that comprise
the use case.

Here is an example of a use case for use of images from the Visual
Resource Center in our Art History department.

VRC Use Case 2
One professor using same images in different courses

Every semester, Professor Bilbao teaches an introductory
photography course, and a course on the history of photography.
She uses digital images to teach both courses, and frequently
shows the same images to both classes. The current image
database and presentation software that she uses (MDID v.1)
allows her to search for images and save them as slide shows in
a course folder, which she can present in class, and the students
can review on-line. The folders for the courses, however, are
completely separate, so she must create a slide show in a
specific course “folder,” and recreate the same slide show for the
other course in its course folder. It would be a lot easier if she
could create the slide show only once, and put it in any course
folder she needs to. Also, she likes to include comments about
images in the slide show, but these comments vary, depending
on the course in which she uses the image. For example, Edward
Weston’s Pepper No. 30, discussed in the Introductory
Photography, may be important for illustrating depth of field, but
important in the History of Photography as an abstract work of
art.

Here is a possible sequence of key events for this scenario (lllustration

10):

Group Annotate 3 Transfer
|mﬂgE5 E |mages |mﬂge
Group

et

Edit —
Annotations

Teach

lllustration 10

Here is the use case which corresponds to this scenario (some empty

fields omitted):

Use Case Name:

Summary:

Actors:
Basic Course of
Events:

Extension Points:

Show same set of digital images in two different courses

Professor uses a set of digital images in two different courses

that s/he is teaching. What s/he has to say about the images

is different in the two courses.

Professor

1) Professor groups images by lecture topic for one course.

2) Professor annotates images with notes particular to that
course.

3) Professor transfers image groups to the other course (in
one easy step, not image by image).

4) Professor edits the annotations so that they are
appropriate for the second course.

5) Professor teaches both courses, using the same image
groups but using them to illustrate different points.

Triggers: Professor is asked to teach two courses where the visual
material can be similar.

Preconditions: Professor has a set of digital images.

Author: Meghan Gross, Teal Anderson

Date: Created 2004-12-21. Last modified 2005-03-10.

Scenarios: VRC, Use Case 2, Introductory Photography and History of

Photography courses

We note that the same scenario might be interpreted differently to
give different sequences of key events (lllustration 11).

Create Save Lse in
Slide — Slide —> Several

Show Show Courses
Annotate Save
Separately Annotations

lllustration 11

If this is the sequence of key events, then the use case would change
accordingly.

Applying Use Cases

In our project, we will derive functional requirements from the use
cases, and then investigate support for these requirements in both
repository systems and existing repository interface specifications.
We can then compare support across use cases, repositories and
specifications to see find gaps which would obstruct the use of various
combinations of repositories and interfaces to support the use cases.

For the sake of simplicity, suppose we end up with four different use
cases, and identify a total of ten different functionalities needed to
support them. We could form a matrix to show which use cases
required which functions, and also which functions are supported by
the various repositories and interfaces. (In all of the following tables,
green cells indicate that the function labeling the row is required or
supported by the item which labels the column; otherwise, the cell is
red). For the sake of argument, let's suppose that our use case
functionality requirements turn out as follows:

Use Case 1l Use Case 2 Use Case 3 Use Case 4

Function 1

Function 2

Function 3

Function 4

Function 5

Function 6

Function 7

Function 8

Function 9

Function 10

Similarly, we can investigate which of these functions are supported by
various repository interfaces.

JSR 170 OKI DR OSIDs

Function 1

Function 2

Function 3

Function 4

Function 5

Function 6

Function 7

Function 8

Function 9

)
>
2

Function 10

Next we can form the same matrix, this time looking at repository
systems to see which functions they support:

DSpace Fedora Content DM

Function 1

Function 2

Function 3

Function 4

Function 5

Function 6

Function 7

Function 8

Function 9

Function 10

Putting all this information into the same table will allow us to see at a
glance which interface/repository combinations support the various use
cases. For example, Use Case 1 can use any of the three repositories
and any of the three interfaces, since its required functions are just the
ones numberedl-3. Use Case 2 requires functions 3,7,8,9 and 10, and
as such is only supported (in this example) by the JSR-170 interface
and the Fedora repository.

uc

=

uc2 UC3 uc4

~
N
o

OKI IMS

O
0

FED

0
O
2

Function 1

Function 2

Function 3

Function 4

Function 5

Function 6

Function 7

Function 8

Function 9

Function 10

More importantly, we will also be able to identify which further
functionalities will need to be supported in both the interfaces and the
repositories to enable additional services as defined in the use cases.

